Amazon Elastic IP Addresses (EIP)
Designing Resilient Architectures. In this module, we explore the concepts of business continuity and disaster recovery, the well-architected framework and the AWS services that help us design resilient, fault-tolerant architectures when used together.
We will firstly introduce the concepts of high availability and fault tolerance and introduce you to how we go about designing highly available, fault-tolerant solutions on AWS. We will learn about the AWS Well Architected Framework, and how that framework can help us make design decisions that deliver the best outcome for end users. Next, we will introduce and explain the concept of business continuity and how AWS services can be used to plan and implement a disaster recovery plan.
We will then learn to recognize and explain the core AWS services that when used together can reduce single points of failure and improve scalability in a multi-tier solution. Auto Scaling is a proven way to enable resilience by enabling an application to scale up and down to meet demand. In a hands-on lab we create and work with Auto Scaling groups to improve add elasticity and durability. Simple Queue service increases resilience by acting as a messaging service between other services and applications, thereby decoupling layers, reducing dependency on state. Amazon Cloudwatch is a core component of maintaining a resilient architecture - essentially it is the eyes and ears of your environment, so we next learn to apply the Amazon CloudWatch service in a hands-on environment.
We then learn to apply the Amazon CloudFront CDN service to add resilience to a static website that is served out of Amazon S3. Amazon Cloudfront is tightly integrated with other AWS services such as Amazon S3, AWS WAF and Amazon GuardDuty making Amazon CloudFront an important component to increasing the resilience of your solution.